三角形的外心到三角形三边的距离相等_三角形的外心
(资料图片)
1、三角形外接圆的圆心叫做三角形的外心. 三角形外接圆的圆心也就是三角形三边中垂线的交点,三角形的三个顶点就在这个外接圆上设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2. 性质1:(1)锐角三角形的外心在三角形内; (2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 性质2:∠BGC=2∠A,(或∠BGC=2(180°-∠A). 性质3:∠GAC+∠B=90° 证明:如图所示延长AG与圆交与P ∵A、C、B、P四点共圆 ∴∠P=∠B ∵∠P+∠GAC=90° ∴∠GAC+∠B=90° 性质4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是: (1)向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 或(2)向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC. 性质5:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。
2、 性质6:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件 (向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=0.。
本文分享完毕,希望对大家有所帮助。
关键词: